

Модуль аварийного ввода резерва МАВР-3-1 УХЛ4

ТУ 3425-003-31928807-2014

Руководство по эксплуатации

EHC

- Внутреннее формирование оперативного напряжения питания для пускателей от фазы L1 (от Ввода 1 или Ввода 2)
- Установка порогов Имин и Имакс раздельно для Ввода 1 и Ввода 2
- Контроль наличия, чередования, обрыва фаз для Ввода 1 и Ввода 2
- Установка времени включения, отключения, повторного включения
- Нагрузочная способность по выходам К1, К2, Авария 16A/AC250V
- Реле аварийной сигнализации (AC250/16A)
- Возможность дистанционной блокировки кнопок на лицевой панели

ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМПАНИЯ МЕАНДР

Содержание

1.	Применение модуля автоматического ввода резерва МАВР-3-1	2
2.	Назначение	2
3.	Функциональные возможности	2
4.	Конструкция	3
5.	Работа модуля	4
6.	Настройка модуля	5
7.	Индикация аварийных режимов работы	5
8.	Технические характеристики	6
9.	Габаритные размеры	7
10.	Комплект поставки	8
11.	Гарантийные обязательства	8
12.	Приёмка	8

1 Применение модуля автоматического ввода резерва МАВР-3-1

Модуль автоматического ввода резерва MABP-3-1 (далее модуль) представляет собой устройство управления, предназначенное для автоматического переключения на резервную линию при неисправности или отключении рабочей линии. Устройство предназначено для работы в составе шкафов (блоков) управления автоматическим включением резервного питания в системах бесперебойного электроснабжения 3-х фазных электроприёмников I и II категории подключения согласно требованиям ПУЭ.

2 Назначение

Модуль контролирует напряжение на основном и резервном вводах 3-х фазной сети. Если напряжение в пределах нормы питание нагрузки осуществляется от ввода с установленным приоритетом (по умолчанию ввод 1).

Подключение нагрузки обеспечивает коммутационное устройство (КМ) электромагнитного типа, контактор или пускатель. Управление КМ осуществляется от релейного выхода на который подаётся оперативное питание. Нагрузочная способность релейного выхода (АС1 АС250В 16А). При аварии на основном вводе производится отключение нагрузки от основного ввода и переключение на резервный ввод. При восстановлении питания на основном вводе нагрузка автоматически переключается с резервного ввода на основной, при установленном приоритете линии. Технические характеристики устройства представлены в таблице 2. Схема подключения показана на рис. 3.

3 Функциональные возможности

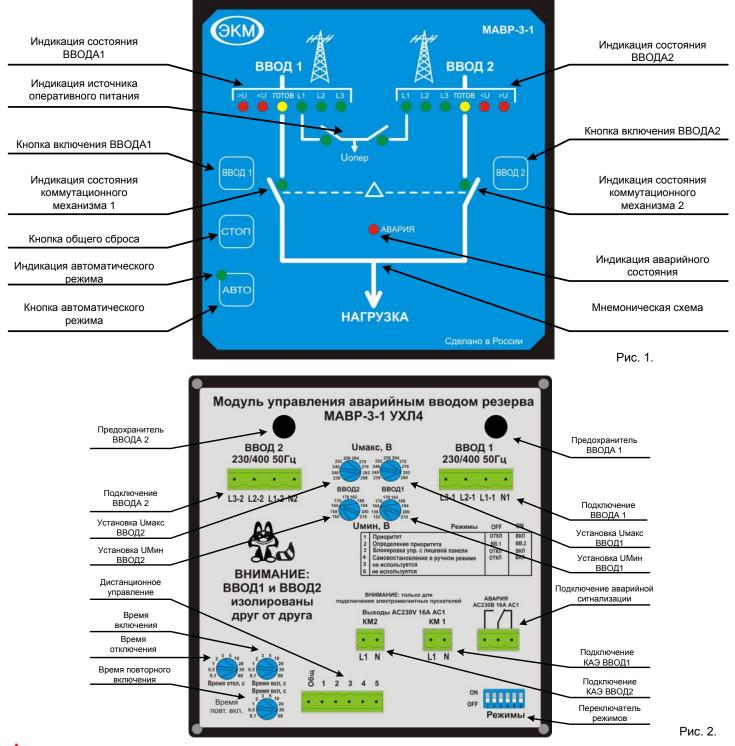
Модуль MABP-3-1 представляет собой готовое к эксплуатации устройство состоящее из трёх независимых электронных модулей: двух модулей контроля параметров трёхфазной четырёхпроводной сети с нейтралью (реле контроля напряжения) и микропроцессорного блока.

Реле контроля напряжения каждого ввода имеет светодиодную индикацию текущего состояния сети. Питание модулей осуществляется от контролируемой сети. Реле контроля напряжения гальванически развязаны между собой и микропроцессорным блоком.

Микропроцессорный блок анализирует готовность основного и резервного вводов, а так же текущее состояние дискретных входов, после чего осуществляет выдачу сигналов управления в виде сухих контактов. Питание микропроцессорного блока осуществляется от фаз L1 первого и второго вводов. Оперативное питание формируется от фазы L1 первого ввода или от фазы L1 второго ввода. При отсутствии обеих фаз, микропроцессорный блок не в состоянии выполнить свою функцию.

Модуль МАВР-3-1 обеспечивает:

- контроль чередования фаз и значений напряжения на вводе 1 и вводе 2;
- контроль обрыва или снижения напряжения ниже установленного порога на любой из фаз по вводу 1 или вводу 2;
- подачу оперативного напряжения для питания КМ (коммутационный механизм электромагнитного типа, контактор или пускатель);
 - аварийную индикацию и возможность подключения внешнего аварийного устройства через встроенное реле;
 - включение или отключение приоритета на вводе 1 или вводе 2;
- блокировку клавиатуры на лицевой панели, возможность подключения внешнего управления при помощи сервисного разъёма;
 - установку порогов отключения ввода 1 и ввода 2 по значениям напряжения Имин, Имакс;
- установку времени включения, отключения, повторного включения ввода 1 или ввода 2 с приоритетом и без приоритета ввода.


4 Конструкция

На лицевой панели размещены мнемоническая схема, СД индикаторы фазовых напряжений, индикаторы пороговых значений Uмин и Uмакс, индикаторы КМ, индикатор АВАРИЯ, кнопки управления устройством (см. рис. 1).

Устройство предназначено для щитового монтажа. Материал корпуса - пластик АВС. Монтаж устройства производится в установочное отверстие габаритными размерами 136х136 мм. Для фиксации используются два кронштейна, входящие в комплект поставки. Габаритные размеры см. рис. 5. Порядок установки кронштейнов показан на рис. 6.

На коммутационной панели (рис. 2) размещены два предохранителя для каждого ввода, разъёмы подключения ввода 1, ввода 2, КМ1, КМ2, внешнего аварийного устройства, ДУ, переключатели установки Uмакс, Uмин раздельно для каждого ввода, переключатели Врем.вкл, Врем.откл, Время повт.вкл., блок микропереключателей «Режимы».

Кнопки «Ввод1», «Ввод2», «Авто» предназначены для местного управления устройством: включения или переключения вводов, включения автоматического режима управления (СД индикатор). Кнопка Стоп - отключение КМ1 и КМ2.

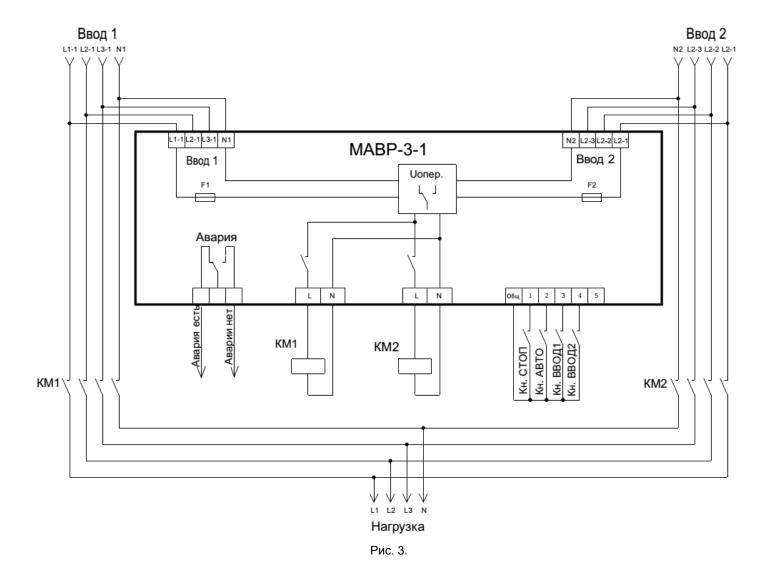
Внимание!

Ответные части разъёмов подключения к коммутационной панели установлены на коммутационную панель.

5 Работа модуля

Устройство следует подключать по схеме рис. 3 согласно правилам и нормам электробезопасности. Работы связанные с установкой, подключением и проверкой должны проводиться квалифицированным специалистами имеющими допуск к работам с электрооборудованием до 1000В. Перед началом работ следует убедиться в отсутствии напряжения на шинах подключения.

При подаче питания на устройство в первый раз, необходимо выбрать способ управления: ручной или автоматический. Для выбора ручного управления необходимо нажать и удерживать кнопку «Ввод 1» или «Ввод 2». Для автоматического - нажать и удерживать кнопку «Авто». Для отключения управления необходимо нажать кнопку «Стоп».


К разъёму «Внешнее управление», подключаются кнопки дистанционного управления модулем (см. рис. 3).

<u>Аварийный режим:</u> При аварии на основном вводе модуль переключит нагрузку на резервный ввод. При восстановлении питания на основном вводе (если установлен приоритет), по истечении времени восстановления, модуль переключит нагрузку на основной ввод. При любой аварийной ситуации (модуль не может выполнять свою функцию) замыкается сухой контакт «Авария» и загорается СД «Авария» на лицевой панели.

Диаграмма работы устройства показана на рис. 4.

Внимание!

Если в случае аварии на первом вводе (если не установлен приоритет), при автоматическом переключении на другой ввод появляется авария по второму вводу, выходные реле К1 и К2 отключают коммутационные устройства КМ1 и КМ2, включается индикатор Авария, а индикаторы Ввод 1 и Ввод 2 начинают мигать.

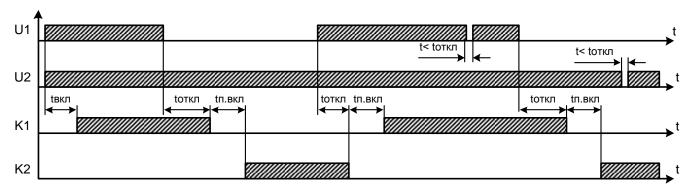


Рис. 4.

Диаграмма работы устройства (рис. 4). Где: tвкл. - задержка времени включения реле; tоткл. - задержка времени отключения реле; tп.вкл. - задержка времени повторного включения; t - время кратковременного прерывания питания.

После подачи питания на устройство (установлен приоритет Ввод 1 «U1») срабатывает реле ввода 1 «К1» с задержкой tвкл., питание подаётся к нагрузке.

При аварии на вводе 1 «U1», после отсчёта задержки tоткл. срабатывает реле ввода 1 «К1» и происходит отключение нагрузки от ввода 1. Через время tп.вкл. (время повторного включения) включается реле ввода 2 «U2» - «К2» и нагрузка подключается к вводу 2 «U2».

При восстановлении питания на вводе1 «U1», через время tп.вкл. производится переключение на ввод 1 «U1» (если установлен приоритет ввода 1).

Время tоткл. устанавливается с учётом того, чтобы при кратковременных неполадках в линии длительностью t <tоткл. не происходило переключение линии.

6 Настройка модуля

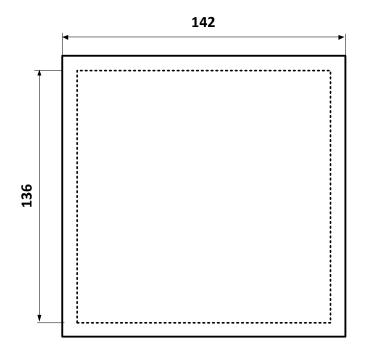
Для настройки устройства необходимо установить значения Uмин и Uмакс определив диапазон рабочих напряжений по вводу 1 и по вводу 2. Установку рабочего напряжения следует производить с учётом характеристик оборудования подключаемого к распределительному устройству (допустимые значения Uмин/Uмакс - см. таблицу 2). Время включения задаётся из расчёта необходимой скорости подключения нагрузки и общего времени переключения на резервную линию. Время отключения определяется характеристиками питающих линий и режимом работы оборудования. При нестабильности напряжения на приёмнике РУ (распределительного устройства) и переменном режиме работы оборудования время отключения следует устанавливать с учётом того, чтобы исключить ложные срабатывания автоматики защиты. Время повторного включения предусмотрено для включения функции восстановления рабочей линии без отключения или переключения нагрузки на резерв. Если время повторного включения не истекло, а аварийный ввод восстановился, то переключение на резерв не происходит. Если время повторного включения истекло, а аварийный ввод не восстановился, то происходит переключение на резерв. Настройка работы устройства при помощи блока микропереключателей показана в таблице 1.

Таблица 1

Nº	Режим	OFF	ON
1	Приоритет	Откл.	Вкл.
2	Определение приоритета	BB.1	BB.2
3	Блокировка управления с лицевой панели	Откл.	Вкл.
4	Самовосстановление в ручном режиме	Откл.	Вкл.
5	Не используется	•	-
6	Не используется	-	-

7 Индикация аварийных режимов работы

Индикация аварийных режимов работы предусмотрена, как для автоматического режима контроля состояния линии, так и для ручного управления устройством. Индикаторы Ввода 1 и Ввода 2 позволяют оценить состояние каждой шины, номинальный уровень напряжения на вводе и готовность линии (ввода) к подаче нагрузки. При аварийном состоянии любого ввода отключается соответствующий индикатор. При значении действующего напряжения на вводе выше или ниже установленного порогового значения включается индикатор повышенного (>U) или пониженного (<U) напряжения и индикатор аварии. Линия с которой производится отбор мощности контролируется по индикаторам кнопок Ввод 1 или Ввод 2. Индикатор Авария включается при любой аварийной ситуации (обрыв шины, нарушение чередования, отсутствие напряжения, превышение значения напряжения, режим переключения на резерв). Отключение индикатора авария производится автоматически после самовосстановления линии или после удачного переключения на резерв.


Таблица 2

8 Технические характеристики

Параметр	Ед.изм.	MABP-3-1			
Тип контролируемых линий (3-х фазная, 4-х проводная)		L1, L2, L3, N			
Количество контролируемых вводов		2			
Напряжение питания ввод1, ввод2	В	180-400			
Частота сети	Гц	47-60			
Максимальное напряжение коммутации / при токе	B/A	AC400 / 5*			
Максимальный ток нагрузки, АС1 / при напряжении	A/B	16 / AC250*			
Пороги отключения Ввод 1, Ввод 2 по Имакс	В	243, 249, 255, 261, 267, 273, 279, 285, 291, 297			
Пороги отключения Ввод 1, Ввод 2 по Имин	В	163, 169, 175, 181, 187, 193, 199, 205, 211, 217			
Задержка на отключение	С	0.1, 0.5, 1, 2, 3, 5,10, 20, 30, 60			
Задержка на включение	С	0.1, 0.5, 1, 2, 3, 5, 10, 20, 30, 60			
Задержка на повторное включение		0.1с, 1с, 3с, 8с, 15с, 30с, 1мин, 2мин, 3мин, 6мин			
Контроль обрыва фазы		Есть			
Контроль чередования фаз		Есть			
Контроль слипания фаз		Есть			
Коммутационная износостойкость		>10 ⁶			
Диапазон рабочих температур	°C	-20+55			
Температура хранения	°C	-40+70			
Помехоустойчивость от пачек импульсов в соответствии с ГОСТ Р 51317.4.4-99 (IEC/EN 61000-4-4)		уровень 3 (2кВ/5кГц)			
Помехоустойчивость от перенапряжения в соответствии с ГОСТ Р 51317.4.5-99 (IEC/EN 61000-4-5)		уровень 3 (2кВ L1-L2)			
Климатическое исполнение и категория размещения по ГОСТ 15150-69 (без образования конденсата)		УХЛ4			
Степень защиты по корпусу / по клеммам по ГОСТ 14254-96		IP54 / IP20			
Степень загрязнения в соответствии с ГОСТ 9920-89		2			
Относительная влажность воздуха	%	до 80 (при 25°C)			
Высота над уровнем моря	М	до 2000			
Рабочее положение в пространстве		произвольное			
Режим работы		круглосуточный			
Габаритные размеры	MM	140 x 140 x 78			
Длинна кронштейнов	MM	85			
Масса, не более	КГ	0.74			
* - Обязательно применение цепей защиты от коммутационных выбросов					

9 Габаритные размеры

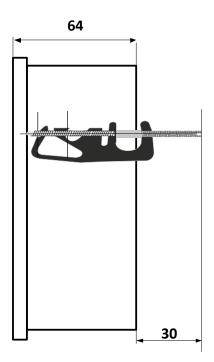


Рис. 5.

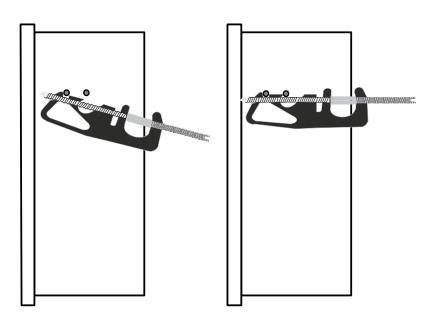


Рис. 6.

10 Комплект поставки

Модуль автоматического ввода резерва	1шт.
Руководство по эксплуатации	1экз
Упаковочная коробка	1шт.

Пример записи для заказа: Модуль МАВР-3-1 УХЛ4. Где: МАВР-3-1 - название изделия, УХЛ4 - климатическое исполнение.

Код для заказа (EAN-13)			
наименование	артикул		
МАВР-3-1 УХЛ4	4640016930357		
МАВР-3-1 УХЛ2	4640016939268		

Производитель оставляет за собой право вносить изменения в названия, конструкцию и комплектацию, не ухудшая при этом функциональные характеристики изделия.

Не содержит драгоценные металлы

11 Гарантийные обязательства

Гарантийный срок изделия 24 месяца с момента передачи его потребителю (продажи). Если дату передачи установить невозможно, срок исчисляется с даты изготовления. Отметку о приёмке контролёр ОТК проставляет на корпусе изделия в виде заводского номера. Первые цифры заводского номера на корпусе изделия обозначают месяц и год выпуска.

Претензии не принимаются при нарушении условий эксплуатации и при механических повреждениях.

12 Приёмка

Модуль МАВР-3-1 №	изготовле	изготовлен в соответствии с требованиями				
ТУ 3425-003-31928807-2014 и признан годным д	для эксплуатации.		·			
Контролёр ОТК	«	»	201 г			